2 resultados para genetic diseases

em Instituto Gulbenkian de Ciência


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Age is the highest risk factor for some of the most prevalent human diseases, including cancer. Telomere shortening is thought to play a central role in the aging process in humans. The link between telomeres and aging is highlighted by the fact that genetic diseases causing telomerase deficiency are associated with premature aging and increased risk of cancer. For the last two decades, this link has been mostly investigated using mice that have long telomeres. However, zebrafish has recently emerged as a powerful and complementary model system to study telomere biology. Zebrafish possess human-like short telomeres that progressively decline with age, reaching lengths in old age that are observed when telomerase is mutated. The extensive characterization of its well-conserved molecular and cellular physiology makes this vertebrate an excellent model to unravel the underlying relationship between telomere shortening, tissue regeneration, aging and disease. In this Review, we explore the advantages of using zebrafish in telomere research and discuss the primary discoveries made in this model that have contributed to expanding our knowledge of how telomere attrition contributes to cellular senescence, organ dysfunction and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A classic T-cell phenotype in systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters T-cell receptor signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multiethnic population. We typed 44 contiguous CD247 single-nucleotide polymorphisms (SNPs) in 8922 SLE patients and 8077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99 × 10(-4) < P < 4.15 × 10(-2)), where we further identified a five-marker haplotype (rs12141731-rs2949655-rs16859085-rs12144621-rs858554; G-G-A-G-A; P(hap) = 2.12 × 10(-5)) that exceeded the most associated single SNP rs858554 (minor allele frequency in controls = 13%; P = 4.99 × 10(-4), odds ratio = 1.32) in significance. Imputation and subsequent association analysis showed evidence of association (P < 0.05) at 27 additional SNPs within intron 1. Cross-ethnic meta-analysis, assuming an additive genetic model adjusted for population proportions, showed five SNPs with significant P-values (1.40 × 10(-3) < P< 3.97 × 10(-2)), with one (rs704848) remaining significant after Bonferroni correction (P(meta) = 2.66 × 10(-2)). Our study independently confirms and extends the association of SLE with CD247, which is shared by various autoimmune disorders and supports a common T-cell-mediated mechanism.